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1. Introduction

We study in this paper the propagation of an electromagnetic
wave into an unbounded domain occupied by a nonlinear dielectric
substance. In some Cartesian coordinate system (xi) on the domain
L < R3 we assume that the domain consists of the half-space
x, > 03 the propagating electromagnetic wave is assumed to be of

1

the form

(1.1)  E = (0,E,(x,t),00, H = (0,0,Hy(x ,t))

and the properties of the nonlinear dielectric substance occupying

& are delineated by the nonlinear constitutive relations
(1.2) D = e(E)E, B = uw(H

which determine, respectively, the electric displacement and magnetic
field in ® in terms of the electric field and magnetic intensity.
The constitutive relations (1.2) are commonly considered in work on
nonlinear optics [1], [2] with € > 0, p > 0 being scalar-valued
functions of their respective fields. As [} = e E ¢+ B(E) where

P is the macroscopic polarization vector and g is the per-
mittivity of free space, and P(E) = X(E)E, where X(E) is the
susceptibility, p = (50+X(g))g. For an isctropic material,

x = XCEN), w = wCigl) and, in most treatments in nonlinear optics

texts these functions are ex, inded in series of the form

. L7
X = Xg+ X E+ oy, E = |El

(1.3) ,
= + + 0 -
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where o is the permeability of free space, Xg is the linear

susceptibility, Xl the first nonlinear susceptibility, and so forth.

Experimentally xl << XO éo that the presence of the term of first
order in E 1in the expression for X is of most interest when E
is large (e.g. in a laser beam) while for most purposes one may
assume that p = o Manyfof our results apply to materials in which
u(d) and e(E) = eg * X(§5 are more general than the forms implied
by (1.3).

In addition to the forms (1.1), (1.2), respectively, for the
electromagnetic wave propagating in Q, and the constitutive relations
which delineate the dielectric material that occupies {, we need

Maxwell's equations which we take in the form

4 ag
3t ° “VxE, divpg = 0
(1.4)
oD
5t © VxH, divp = 0

We also introduce the notation

T = e((0,2,00), m(x) = u((0,0,2)), » € RY

and assume that

ChG) T, W) e MY

h(ii) S(x) # 0, nCx) # 0, vz ¢ R

h(iii) (K?(g))' > 0, (g:(g))' > 0, Vyr € R1 or, at least, for all

¥ with |»| sufficiently small.




From (1.2) and the assumed form of the wave (1.1) we obtain-

'g = (O,Dz(xl’tb,o), g = (0,0,Ba(xl,t))
with

D2(x1,t) = e(E&(xl,t))EQ(xl,t)
(1.5)

B3(x1,t) = u(H3(xl,t))H3(xl,t)

By hypotheses h(III) these relations may be inverted so as to yield

(
1
E (x.,t) = = D,(x.,t) = MND, (x.,t))D (x,,t)
271 S(E(D,(x ,t)) 2 1 21 21
(1.6)
1
Ho(x,,t) = = B.(x.,t)) = v(B,(x,,t))B,(x,,t)
3L N(H(B, (xyt)) O 3771 3
where VX ¢ Rl we have defined
e (E(x)) L(H(x))
i 1
with (for p, z € R7)
p = ey »y = E(p) = E(E(Z) = Mpo
b = gz = Hw) = HGEWY) = v(p)p
Therefore Vp € R (or Ve with |p] sufficiently small)
_dz . dEG) 1
(1.7) ([)7\(})))' = dp - (lp - m > 0
. -




by h(iii) and, similarly, (ov(p))' > 0, Vo € R'. Note that in the
special case where p = Bgs Y = l/u0 > 0. In the next section we
demonstrate that shock waves may be expected to form in the electro-
magnetic wave (1.1) as it propagates into the half-space X, > 0,

We also derive some estimates for the maximal time of existence of a
C1 wave and estimate the distance travelled by the wave into the
half-space until the development of the shock; these latter results
are presented in §3.

There is considerable literature, ref. [10]-[17], on shock develop-
ment in electromagnetic theory with the papers that are closest to the
present work, in spirit, being those of Broer [10], [11], Katayev [16],
and Jeffrey [11]), [12]. The work of Broer, however, is not applicable
to those important situations in which the quasilinear evolution equa-
tions are not genuinely nonlinear while our work differs from that of
Jeffrey by virtue of the fact that by working with the constitutive
relations (1.2) and employing D and B as our basic variables,
instead of E and B, as in [12], or E and H, as in [111, we are
able to write our evolution system in conservation form; the importance
of working with D instead of E was emphasized in (6] and is based
on the fact that E 1is, in general, not divergence free in a nonlinear
dielectric while D 1is if there is zero free charge. Some of the con-
sequences of having the equations for D, B in conservaticn form,
i.e., the implications of the Rankine-Hugoniot and Lax k-shock conditions

are developed in the next section.  The application of Lax's clepant

work [3], also simplifies the asymptotic estimate for ! inax in §2 41 1

makes possible a rather simple and explicit computation in §3 !for S

the distance travelled by the wave into the half-space before shock

development occurs.
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2. Shock Development and Propagation

To simplify the notation in this section we set x = Xy

39 B = B3' In view of the forms of the

electromagnetic field vectors in the wave entering the half space

D=D,, E=E, H=H

% > 0 Maxwell's equations (1l.4) reduce to the pair of equations
(2.1) aD . a_E = _.a_ﬂ . 9B . aH = - ?.E_

) oE ot ax > aH  at ax
or

~ L} -
(¢ (EDE) Et + Hx = 0
(2.2)
~ \ -
(L(H)H) Ht + Ex = 0
Setting, a(y) = N—l—— > 0, b(z) = —N——];-——- > 0, V¥ ¢ Rl,
(e (2! k()2
we see that E(x,t), H(x,t) satisfy the first-order quasilinear
system
{Eﬁ + a(E)H = 0
t X
(2.3)
H, + b(H)E = @
t X

which is, unfortunately, not in the usual conservation form. We

thus rewrite the system in the form

E Ht

t _ . -
(AzE§+‘{x = 0, b(I }'x 0

and notc that in view of the definitions of a(*), b(¢), and (1.5)




(2.4) D(x,t) =

: - 1 - 1
Clearly, Dt(x,t) = m Et(x,t), Bt(x,t) * BHx, )Y Ht(x,t)

and as a(%) » 0, b(E) > 0 the relations (2.4) are invertible with,
in taect, E(x,t) = E(D(x,t)) and H(x,t) = H(B(x,t)). Therefore,

the system (2.3) is equivalent to the first-order quasilinear system

[ D, + H'(B)Bx
(2.%5)

1\Bt + E'(D)Dx

"
o

L
o

where H(B) = y(B)B, E(D) = A(D)D. If we rewrite (2.5) as

D 0 H'(B) D
(2.6) + = 0
Bf,t E'(D) 0 Bf,x

then, clearly, the system for D, B is in the usual conservation

form

) .
= u. + — f, = =
at i ax fl 0, 1 1,2

where u =(g) and T =(g§g;). In the most common situation, that of
a nonmagnetic material, u(H) = by SO that H'(B) = l/u0 and (2.6)

reduces to

D 0 1/u.0 D
(z.7) + = 0
Bf,t E'() 0 BJ x

With (2.7) we associate initial data of the form




(2.8) D(x,0) = Do(x), B(x,0) = Bo(x)

dinbe >

and real characteristics in the x,t plane

dx _ ETD(x,1t))
(2.9) == = s LA T.E LA
dt Y, ko

Note that for ¢ ¢ R, E'(2) = (XA (¥))' > 0 by (1.7). The positivity

of E'(2), VvZ ¢ R1 is equivalent to the strict hyperbolicity of the
system (2.7); via standard a priori estimates (Lax [3], Nishida (4]) on )

the Riemann Invariants associated with the system (2.7) (these being

defined below) it can be shown that if supIDO(x)l and sup[BO(x)f
1 1

R R
are sufficiently small, and E'(0) > 0, then for as long as a

sufficiently smooth solution (D(x,t), B(x,t)) of (2.7), (2.8) exists,
on 0 <t < too, for instance, we will have E'(D(x,t)) > 0,

X € Rl, 0 =t <« tmax‘ For sufficiently small initial data, therefore,
the (real) characteristics (2.9) are well defined on the maximal
interval of existence of Cl solution even if only local hyperboli-

city of (2.7) obtains, i.e., even if we only have E'(0) > 0.

We now define the Riemann Invariants associated with (2.7) to be

.
D
r(D,B) = B+ —* f VETTDY dy
" 0
(2.10) v Yo
\ D
s(D,B) = B - —_ f VET(D) ax
v oIy 0

By standard results r and s are constant along theivr respective

characteristics, i.e.,




4
! s L = GRS ——~—-——-——-—D X,t or .
r'(x,t) 3 V/ : io )) 3% 0
(2.11) J
s ETO(x,1))  8s
s'{x,t) = (1{ + _._..__D._i(._’_t___ 95 - g
\ o '/ “'O ax

and we have the following blow-up results which are consequences,

respectively, of the work of Lax [3] and Klainerman and Majda (5].

(A) If Do(x) is periodic on Rl, Bo(x) z 0, and E"(0) # O
(so that the problem exhibits genuine nonlinearity) then finite-time

blow-up must occur for

r (x,t) = B (x,t) + = VET(DZ.T) D (x,t)
X x X

_ o

N A G ICN D]
—uth(x,t) + - E'(D(x,t) Dx(x,t)
0

- v D = (D_,D_ ) must blow-up in finite time and a shock develops.
(x,t) t’7x

Futhermore, it is a consequence of the work in [3] that

i
0 VE'(0)

(2.12)  tpax = maxlDa(QTI (0

a result we will apply in §3 to a specific class of nonlinear dielec-

tric materials.

(B)  JSuppone that I)O(X), BU(x) both have compact support in RI;

then so will
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r
1 Do(x)
r(x,0) = Bo(x) + = f VET () o
| o do
\
1 Do(x)
s{x,0) = Bo(x) - = j VET () dr
L o 0

From the recent work of Klainerman and Kajda [5] it then follows that
if r(-,0), s(-,0) are also of class C1 then any C1 solution of
the initial-value problem for the diagonalized system (2.11) must

develop singularities in finite time in the first derivatives

r.> S, if E'(%) 1is not constant on any open interval. Tor example,
3

if with Ay > 0, A(Z) = A+ A,g? then E(¥) = N+ AL, Clearly

E'(0) = Ag O (local hyperbolicity) and E"(0) = 0 (loss of genuine

nonlinearity) but E"(¥) = GXZ; ¢ 0, if Z # 0, so that the result

of [5] applies for Cl, compactly supported initial data.
Remarks. If (D,B) is a sufficiently smooth solution of (2.7),

say class C2, then clearly we may eliminate so as to obtain the

scalar nonlinear wave equation for D(x,t):

2

2 .
(2.13) 25 Dx,t) = a2 E(D(x,0)). ;
at ax ;

This equation was derived by this author in [61 by specializing the

three dimensional evolution equations

i 2
(2.14) It ; = 9YOMRID,) -grad, (gradh(D)-D),

obtained under the assumption that B = ugll, Lk = A(R)D in @, to

hh-""'"""““‘“"""'““"“*-ﬁﬂnunn-u--..; - it .. p
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the case of an electromagnetic wave ot the form (1.1) propasating ithrough
an  » nonlinear dielectric cylinder, with the direction of propagation
directed along the axis of the cylinder. Several facts may be noterd

about the simple wave equation (2.13)

1) Suppose we set D(x,t) = Gx(x,t) in (2.13). Then provided that

G(x,t) 1is sufficiently smooth we obtain

Gttx = l/pOE(Gx)xx -+

Gtt 2 l/“OE(Gx)x + K(t) i

where ¥(t) 1is an arbitrary function of +t. Thus the usual scalar
nonlinear wave equation which arises in one-dimensional motions of a

nonlinear elastic body is not equivalent to (2.13).

2) Suppose that D(x,t) 1is a solution of class 02 of an initial-
value problem on Rl associated with (2.13) and is such that for

0 =t < t
max

t
(2.15) J E(D(-w,t))xdt < = where

1]

lim fé%z E(D(x,t))]

K> =0

E(D(-=,t))
X

If we set

X t
J Dt(y,t)dy - J E(D(—w.t))xdt + C

-0

(2.16) B(x,t) = -

where C 1is an arbitrary constant, then




1]

bx(x,t) = -pUDt(x,t), and by (2.13)

. X a2
B, (x,t) ~kg J — D(y,t) dy - E(D(—w,t))x

o at?

X 2
- f _i._z. E(D(y,1))dy - E([)(-““st))x
oy ay

- BE(D(x,t))
X

so that the pair (D{x,t), B(x,t)) is a solution of the system (2.7).
This equivalence between the system (2.7) and the scalar nonlincar ;
wave equation (2.13) only holds if B is well-defined, i.e., if
(7.15) obtains. As

E(D(—w,t))X = 1lim [E‘(D(x,t))DX(x,t)],

Hr=0c0

if (2.13) is strictly hyperbolic, i.e., E'(¥) = 0, VI € Rl, then

clearly (2.15) will obtain if 1lim IDx(x,t)l =0, 0t <t

for oo max

We now return to the system (2.7); shock development and propagation
in the more general system (2.5), which is strictly hyperbolic

provided E'(Z)H'(Z) = 0, VZ € R], will be dealt with in a forth-

coming paper [7]. If we let s denote the speed of the shock which
develops either in case (A) or case (B) above, and [F] the jump in quan-

tity F across the shock then the Rankine-Hugoniot conditions require

that s[uk) = [fk], k = 1,2 where

(g) and T = (1/u0 B)

A(D)D

-
u




We therefore obtain the conditions

s[Dl = X [B] = [H]
“’O
(2.17)
s[B] = [A(D)D] = iE]

from which follow the simple relations

(i) [DILE] = [HI[B] = X [B1?
Ho
(ii)  s’[p1 = S (B} = 1 [E)

The shock speed is, therefore, given by

o [E] . 1 /TAMDID]
(2.18) s = 0 = /D) v/ (D1
v Ho

so that two shocks are possible, one moving to the left and one

moving to the right. We now apply Lax's [8], [9] k-shock conditions
;)

to the system 3t us + 3% fi = 0, i=1,2; 1i.e., we requirc that
for either k =1 or k = 2
(2.19) (D) > s > A (U

where u =(g), T = l/“OB and the Xk’ k = 1,2 are the
A(D)D

distinct real eigenvalues of the matrix vﬁ?. However, by (2.9)

(2.20) A= A VEmY, A, = - X VETTHD
1 —_— 7 p—
vV Ho v Ho
In (2.19), ﬁ_ = (g—), 3+ = (g+) denote, respectively, the
- +
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values of U behind and in front of the shock. The conditions
(2.19) represent one formulation of a classical entropy condition

for solutions of hyperbolic conservation laws containing a shock.
Ucing (2.20), (7.19) becomes
VE'(D~) > /uo s > Vf'(D_S
(2.21) or
[ 7 - T
VE (D_S > /LLO s > VE (D;Y

However, by the definition of E, E = E(D) = E(D(E)), where

D(E) = =(E)E so that (2.21) is equivalent o

(
1 — 1
———— A I g p—
TTED VITE,)
(2.22) or
1 1
- ——— > fp, 8 > —
VIT(E) 0 VDTTE)

: ; -1 /_LE]
For the shock moving to the right, s, . [DCEY]
vV Fo

so that only the first inequality in (2.22) makes sense, and we

must have

(2.23a) VD(ED < LT%%%A < WIED

For the shock moving to the left S, = - i; v Té%%%j
vV o

so that only the second inequality in (2.22) makes sense, and wc

obtain

T [OC(E) ] SRy
(2.23L) VD' () > /-———5[2]5 > VD(E,)

e iee e e et mwe t e re e —— - = -




Thus the k-chock conditions of Lax predict that (2.23a) must hold

for the shock moving to the right while (2.23b) must hold for the

shock moving to the left. We now examine the implications of (2.23a,b)

for the simple but physically important case where

(2.24) e(E) = eg * oty

1

We recall that by the definitions of E, D, V¢ € R™, ¥ = E(D(¥))

where D(Z) = ?(z)é = eog + 52z3. Thus D(z) = 0 if and only if

Z = 0. A direct computation yields

_ET(D(%))D" (%)

(2.25) E"(D(Y)) =

01 2(y)
where  E'(D()) = 9L} preny - gg
g >

If E'(D(Z)) > 0 (at least for |[¢| sufficiently small) then

Gezz
(2.26) E"(D(®)) = <E'(D(L))- —" 9
(eo+352§ )

so that E"(D(0)) = E"(0) = 0 but E"(D(X)) # 0 for all ¥ # 0.
Thus for Cl initial data with compact support the results of

Klainerman and Majda [5], as previously stated, apply and shocks

will develop in finite time. As ©D'(E) = e * 352E2, the condition

(2.32a) relative to the shock moving to the right with speed

.. A jIE—
’ \/_“_0_/[50}3”2333

2 i E+ - E._
= /B 3 .3
v o/eo(z+-z_)+52(g+-z_)




1
-2

R 2 :
= ug (sgte, (E) +(E +L_)E_))

7

I 2 2
.27 £
(2.27) /e +35,E° </ gg*re, (Eg+(E,+E_DE_)
<  5 +3¢ E2
vV ~0 27+
This last inequality clearly implies that

(.2 2
b2 +EE > o

- - 1
1

(2.28a) {

2

2 - -
L.+ E,E_ < 2K

N

from which we easily deduce that

(2.28p) 282 -2 > EE > 28 - EZ i
+ - + - - +
and ;
.2 2 . .
(2.28c) E, > E_ (across the shock moving to the right)

In a completely analogous fashion we obtain, for the shock moving

to the left

P

i - 2 -5
& = -pg (a0+52(E+ +(E, + E_JE D)

whilec across this shock

2 -
2EC > E, * E,t

(2.29a)




16

from which we deduce that

? 2 2 _ .2
(2.29b) 2El - E} > EE_ > 2E: ES
and

2 2 )

(2.29c) E. > E, (across the shock moving to the left.)
The situation corresponding to (2.28c) and (2.29c) is depicted below

where we have denoted the shock moving to the right with speed s,

by x = xr(t) and the shock moving to the left with speed 38
by x = xp(t)
t g
X= Xp (8
E. [€e,
—> X

-In the figure sketched above E,, E_ denote, respectively, the values
of E(x,t) in front of and behind the respective shocks. For the

shocks xc(t), xr(t) therefore, (2.28c) and (2.29¢) predict that




7 . . . .
L (x,t) must increase as we crogs the respective shocks, moving 1In

the direction of increasing x. However, that part of the energy

residing in the electromagnetic wave which depends on E 1is given
by OE = XD(E) = E or
€ - MW(E)E = %((ej+e,E0)E)E

£

and thus we have the result that

(2.30) ‘E(x,t) = l/zeOEQ(X,t) + %ezE”(x,t)

must increase as we move across the respective shocks in the direc-

tion of increasing x.

Remarks. For the equations (2.3), i.e.

n
o

[Et + a(E)HX

(2.3)
l‘H + b(H)E
t X

n
o

where a(E) > 0, b(H) > 0 it is a simple matter to show that there
exist solutions of the form E(x,t) = Eo(x-Xt), H(x,t) = He(x-\1)
where Eo(x) = E(x,0), Ho(x) = H(x,0). In fact \ = #Va(E)b(H)

so that (implicit) travelling wave solutions of the form

Eo(x + Va(E)b(H) t)

(2.31)

Ho(x + va(EYb(H) t)

2
may be well-defined, at least for small values of tf ) If the

material is such that p(H) = pg then b(H) = ual and (2.31)

2. b - - .
Solutions of the form (?2.31), for Lhe system (72.3) have been discussed
by Katayev [16].




m———

assumes the form

E = EO
(2.32)

H = HO
If we define

F(x,t,E)

then F(xO,O,O) =

and

FE(x,t,E)

fa(E)
(2.33)

1\a'(F) =

In the typical sit

0 and a'

+ alE then

1

-5
£y 1
170 -
50% Lo(xo).

is such that

a(o)

£o

"
—
I+

X0

(i) (E)

or
(ii) e(E)

N

a solution [ = E(

18

(x * uB% va(E) t)
(x + ui? VA(E) 1)
= E - Ej(x ¢ uB% va(E) t)

0, for any value of x such that Eo(xo) = 0,

0

1
-3

1)

—1 —
1+ zuofsé(x:MO%VETETt)-(a(E)) a'(E)

€(E) + e'(E)E » a(0) = 3(0)
2€'(E) + e"(E)E » a'(0) = 2e'(0).

uation where :(E) T eg toe E°, €

(0) = 0 so that F.(x,,0,0) = 1. If e(E)

a(0) = ¢ a'(0) = 2e and FE(XO,O,U)

0° !

By the implicit function theorem, therefore, if

Eo(xo) = 0 and, either,

€0 + 52E2

e + ¢e,E and e;5 + ¢ -%E "(x.) # 0
0 1°° > &g * EqHg Bg “%p

x,t) of F(x,t,E) = 0 will exist for |x-x0|

ALz




ro— .

and |t] sufficiently small. .
Suppose, now, that we differentiate the first relation in (2.32)
through with respect to x and solve for EX; we easily obtain

~1
-4 1/ Mo .
O(tio Va(E)t)/ 11:7 I a'(e)xt

(2.34) E = E!
b
where a(E), a'(E) are given by (2.33). If 3e* > 0 such rhuat

(2.35) Vg#%%%_ < TEFo Yz € Rl, jz| sufficiently small

. B VR
then for the wave moving to the left with velocity uo‘Va(E)

- ' -
(2.36) 1 -2 fugt al(B) , _ ;. z/eetext -0
va(E)

as t -» t¥* = 24/ual ¢e* and, thus, by (2.3u4)
(2.37) Ex(x,t) + + o as t -+ t#*

It therefore follows directly from (2.34) that a shock can be expected

to develop provided the constitutive relation in the material is such

that (2.35) is satisfied. For the case in which ?(&) e toeY,
Y € Rl, (2.35) assumes the form \/50+251g < 251/5* which is
certainly satisfied for |¥| sufficiently small if ¢* is chosen

sufficiently small; the prediction of shock development via (2.34)
is not suprising in this case since we are in the genuinely nonlincar
situation.

However, if r(Y¥) = eg t ezgz then (2.3%5) is equivalent to

2 < ‘e
+
€4 3525 e? Y




whi~h can not be satistied 7%, %] sufficiently small, no matter how
small e¢* > 0 1is chosen; this is, of course, a situation in which
genuine nonlinearity fails and shock development can not be shown to

* follow directly trom (2.34). This is, essentially, the sort of
situation in which the utility of the result proven by Klainerman

and Majda [5] becomes apparent provided the initial-value problem,

formulated in terms of the fields B and Jp, instead of E and
H, 1is such that the initial data are Cl and compactly supported. R
Analogous results may be presented for the more general situation

described by the system (2.3), where we do not assume, a priori, that

E(&) = kg Yy € Rl, but a discussion of such results will be

relegated to a forthcoming work [7]. It is noteworthy to remark that
solutions of the basic form (2.32), for an electromagnetic wave
propagating into a half-space filled by a nonlinear dielectric sub-
stance described by an arbitrary functional relationship between D

and E, were previously obtained by Broer [10], [17] wherc the analysis
was taken as far as the determination of Ex which, it was shown,

could blow-up in finite-time thus leading to the initiation of non-

uniqueness in the solution.

Remarks. If we consider a material for which w(H) = ng then (2.3)

reduces to

’
E, + a(E)H = 0
t X
, + = E = 0
Ho
\
which is easily seen to imply that bB(x,t) satisfies the nonlinear

wave equation




RIS —

‘. 1 d 2
7 - = = =
2 38) Ett s a(E)Exx {dE en a(E;}Et

an interesting equation in its own right which will be considered

in {717,




Some Computational Aspects of Shock Development

In this section we derive some estimates for tmax’ the maximal
time until the development of a shock in an electromagnetic wave of
the form (1.1) which is propagating into a half-space filled with a
nonlinear dielectric substance. We also estimate the velocity of
the wave in the nonlinear dielectric and the distance travelled by

the wave into the half-space until the shock develops. We assume

that the dielectric conforms to the constitutive hypothesis

D = :gE+ P(E), B = ugH :
E |
. 2 e s
with P(E) = XOE + XlE . XO > 0, xl > 0. The quantities X4
Xy have been defined in §1 as being, respectively, the linear and 4
: (first) nonlinear susceptibilities of the dieiectric. Thus, !
: = ! = & + & 1 c = e = .
il D ¢(EYE, €(E) £g EQE with e o + XO’ €. X1
‘ From D = (e +X )E + X1E2 we easily compute that
(e +X.)
. 0 "0 1 Jff 2
= - +
(3.1) E(x,t) 2X1 + 2X1 (eO XO) +quD(x,t)

Choosing the positive sign on the radical and expanding in a power

series we obtain E = A(D)D + 0(D3) where

7
x(D) =

_x2

1 .
(cg¥Xg03/2 < 0

Our problem, up to terms of order D3, is then of the form (2.7) with




[ Uy P

X X2

} 1 1
E(D) = (g b - (e ¥X)3/2 D

2

so that
o 22
E'(D) = - - D > 0 for
=+
(eO xdT (50+X0)3/2
(3.3)

1
ID] < (eo+x0)2/2xl

We assume that initial fields of the form (2.8) are prescribed with
BO(X) =0, DO(X) periodic on R], and sufficiently small, so that
the standard a priori estimates, based on the Riemann invariants
associated with (2.7), imply that (3.3) is satisfied for as long as

a C1 field D(x,t) exists. Actually
D (x) = (e +X.JE (x) + X.E2(x)
0 €™ %0’"0 170

so that

1 1]
(3.4) DO'(X) (50+X0)Eo(x)+2X1E0(X)EO(X)

"

1]
Eo(x)[(so+xo)+2xlEo(x)]

\] .
2x1E0(x)E0(x) ;

In making the approximation in (3.4) we are assuming that the
initial field is that of a high intensity (laser) beam whose strength
is of the order of magnitude lﬂg(volts/meter) while o the per- |
mittivity ol free space is of the order IO-]B(ColumbS/valon—Me!vrs?h
X is ol the order lﬂ-l3(00lumbn/Newton—Meters?), and x] in ol

X 4 -13 .
the order LOlS(Columbs/volts ). For example, X1 = 4 x 10 for




T

x matched KDP [2]. The various units (MKS system) are related
by the identification Newtons/Columb = Volts/Meter, which are the
dimensions of the electric field E (that of D, the electric
induction field, as well as of P, the polarization, are then

Columbs/MetersQ). Thus, in (3.4), the quantity (¢ +x0) is <! order

0
0713 hile ».E is of order 10~ %,

“170
Since E"(0) = -°xi/(50+x0)3/2 # 0 the problem (2.7), (?7.8)

is genuinely ncnlinear and the results of §2 apply. 1In particular,

1

we find that

(3.5) t - "0 vE'(0
) max max1D6(x3] JE" (O
pe e +X )
0' 0" "0 Cia-1
——XT (maxIEOEOI)

1

Also, if we denote by Vv, the velocity of the beam in the dielectric

then

\/ uo(e(E)E)’

1
/uo((eo+x0)+2x1}:)

19 (n

the

However, u0(50+xo) is of the order of magnitude 10~ 0°

permeability of tree space is yn1p~/ Newtons-Seconds

Columbs’

while uoxlﬁ is of the order of magnitude 10-10. Thercfore,




1 1

yoHoX b VR

-

v

) v (max L)

Ninally, the distance travelled Ly the beam into the dielectric

ha:i-opace until the shock develops is given approximately by

“max Yy * Pmax S
£,
(e +x ) S i
-4 :
= —LX  (maxE)"? --————%7—9— (maxIEOEOI) lxv’u' (
VALOLS! 1 &Akf N
. \'J\\" [ . L
- -
- L £ ]
1 R v
1 u5(50+x0) L -1 ¥°/A &
(..7) Spax T — T3 (max E) ‘(max[EOEéf) Yo, \
VZ X N e
N TN
\‘ a\\"b =\ f‘ ) ."'\

[t over the distance travelled by the beam into the h@ﬂf—space,uﬂfil

/ . _
shock development, max L . max EO’ then we have the (admittedly Lru?o

V2N
[ \
but, nonetheless, informative) estimate, / v
, o
_7./‘,~ , K‘:}/VV‘
= =T 1=
—7(3.8) S ~ chmd 3/2(max|E 1)~?
max ( 0!
' s .‘\,Lf. ‘u),LLWéZ: T \_4\ X ,/\_/«Lk 3 — j
N b T
Lo ~ ™ wéKe“+X—5 ) o
where  C_ =(—ij~————————- is a characterlstlc ‘material co fficient
— 5
V2 o gt le e 2 “ .

which may be associated with a particular nonlinear dielectric

substance. TFor most common nonlinear dielectric substance, €.£.,

index matched KDP, CI\7 will be a very large number, something of the

0

. 21 c s Lo
order of magnitude IOjﬂ. Thus (3.8) indicates that even for an inci-

. . . . 9
dent high intensity beam of the order of magnitude 10 \\vn]1s/mnrwr B!

stecp pradient on the incident beam will be necded so Y hat shock

. development may océur within dlstancesJobfalnable undeg\iaborafnry{ TU
\ L_ /U s 1o 2 e . AT
I« .uditions. k/ X - . AN LU | - .

‘ /ﬂw N S L ¢ “C /b’: Z r q 4 (":’u;./
B SR TS e i | , :
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